Apr 262015
 

In den Osterferien hatte ich einmal Zeit und Lust, mich ein bischen mit Theorie und Unterrichtsmethodik zu beschäftigen, hab das Buch von Hilbert Meyer zu Unterrichtsmethoden gelesen und wollte einmal ein paar Gedanken dazu veröffentlichen. Das Standartwerk ist nun schon ziemlich alt und in vielen Auflagen erschienen und beinhaltet viele Anregungen, die auch nach dem Referendariat immer wieder helfen, die Unterrichtspraxis kritisch zu reflektieren. (H.Meyer, UnterrichtsMethoden, II: Praxisband. Frankfurt/M. 1987 (mehrere Auflagen), ISBN 3-589-20851-1)

Mir gefällt besonders der handlungsorientierte Ansatz und die Betonung der Sicht der SuS. Die Lernlandkarten zur Visualisierung finde ich einen guten Ansatz, auch wenn sie mir manchmal etwas unübersichtlich erscheinen. Es drängt sich förmlich auf, sie mit digitalen Medien zu visualisieren.

Aber ich habe auch einige Schwierigkeiten in Bezug auf meine aktuelle Unterrichtspraxis, d.h. auf Matheunterricht in der Oberstufe und Physik in der Mittelstufe, und die im Buch aufgeworfenen Theorien ausgemacht, die ich im Folgenden beschreibe. Natürlich lässt sich das Thema nicht erschöpfend in einem Blogbeitrag behandeln, daher bin ich über Anregungen und Kritik generell dankbar. Ich hoffe vor allem Kolleginnen und Kollegen mit Beiträgen wie diesem anregen zu können. Continue reading »

Feb 212013
 

Als Gegenstand zur Vorbereitung der lokalen Änderungsrate habe ich gestern eine Stunde in der Vorstufe durchgeführt, die problemorientiert die Ermittlung von Steigungen auf verschieden großen Intervallen eines Graphen motivierte. Anhand eines aktuellen Zeitungsartikels zu geplanten Roboter-Einsätzen auf dem Mond, um in tiefen Kratern nach Wasser zu suchen wurde die Leitfrage aufgeworfen, welche Krater ein solcher Roboter mit einer gewissen Steigfähigkeit wieder verlassen kann. Anhand gegebener Graphen ermittelten die Schüler/innen zeichnerisch mehrere durchschnittliche Steigungen und präsentierten diese per Overhead-Folie. Trotz moderner Medien habe ich mich für die Arbeit mit solchen Folien entschieden, da sie während der Erarbeitung in Gruppen problemlos nebenbei gestaltet werden können. In der anschließenden Diskussion wurde thematisiert, wie eine maximale Steigung angenähert werden kann, um damit die lokale Änderungsrate als Ergebnis einer Grenzwert-Betrachtung immer kleinerer Intervalle zum Differenzenquotienten vorzubereiten. Abschließend wurde das Erlernte mit einem einfachen Lückentext und einer Hausaufgabe gesichert.

Als Aufhänger verwendete ich einen Zeitungsartikel zum Roboter-Einsatz auf dem Mond vom Handelsblatt. Das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) forscht in Bremen seit Jahren an Robotern, die möglichst energiesparend und beweglich für Forschungen auf dem Mond eingesetzt werden sollen. Durch eine Impulsfrage von mir als Lehrer zu den Herausforderungen eines solchen Robotereinsatzes auf dem Mond sollten die Schüler/innen sich eigenständig der Leitfrage nähern, aber auch weitere wichtige Fragen im Kontext darstellen können.

Ich habe mich entschieden, den Schüler/innen drei Graphen zur Betrachtung zu geben, um einerseits motivierende Teilergebnisse zu sichern, da zwei der drei Graphen bereits sehr schnell eindeutige Aussagen zulassen. Der dritte Graph sollte dann analog zu den einfacheren ersten beiden bearbeitet werden und ist so konzipiert, dass er höhere Anforderungen mit sich brachte. In erster grober Näherung liegt die Steigung des dritten Kraters unter der Steigfähigkeit des Roboters, auf einigen kleinen Intervallen ist die Steigung dann aber über dieser, so dass er diesen Krater nicht verlassen kann. Somit wurde den Schüler/innen durch die Aufgabenstellung nahegelegt, kleinere Intervalle zu betrachten.

Arbeitsblatt Seite1

(Bildnachweise für das Arbeitsblatt: Roboter-Screenshot vom DFKI, Mondkrater unter public domain von der NASA)

Arbeitsblatt Seite2

(Bildnachweise: Eigene Produktion)

Eine der drei Präsentationsfolien

In der Nachbetrachtung hat sich das Problem des Roboter-Einsatzes als Unterrichtsgegenstand gelohnt, die Schüler/innen waren interessiert bei der Sache und die Leitfrage war einfach verständlich und damit der Arbeitsauftrag klar. Nach der Präsentation zielte ich mit einer Frage zur notwendigen, hypothetischen Steigfähigkeit eines Roboters zur Bewältigung eines gegebenen Kraters auf die Ermittlung der maximalen Steigung des Graphen. Diese kann nur als punktuelle Steigung sicher berechnet werden und somit wurde die Betrachtung lokaler Steigungen in den folgenden Stunden vorbereitend motiviert.

Materialien:

Arbeitsblatt-Gruppenarbeit (pdf)

Folie-A (pdf)

Folie-B (pdf)

Folie-C (pdf)

Arbeitsblatt-Lueckentext (pdf)

Arbeitsblatt-Hausaufgabe (pdf)

Sep 032012
 

Da ich mich gerade im Referendariat befinde, veröffentliche ich auch Teile meiner Auseinandersetzung mit der Ausbildung auf diesem Blog.

Vor einigen Tagen habe ich eine Hospitation in der Vorstufe (Klasse 11)  in Mathe durchgeführt und mich dabei unserem derzeitigen (Wiederholungs-)Unterrichtsgegenstand „quadratische Funktionen“ problemorientiert genähert. Gar nicht so einfach, wie ich finde, wo quadratische Funktionen im Alltag nicht so üblich zu finden sind wie geometrische oder stochastische Figuren und Konzepte.

Angelehnt an den schriftlichen Überprüfungen Mathematik (pdf) der Klasse 10 in Hamburg  habe ich mich dem Thema „Brückenbau“ genähert und eine gelungene Problemstellung gefunden, die sich in verschiedener Ausprägung häufiger auch im Netz findet (wenn bei google „brücke parabel lkw aufgabe“ eingegeben wird, erscheinen einige Treffer zu ähnlichen Aufgaben)

Die Problemstellung sollte allerdings durch einen stummen Impuls mit Bild von den Schüler/innen selbst gefunden werden, was auch relativ gut klappte, dann aber zu wenig im Unterrichtsgespräch fokussiert wurde.

„Wie hoch muss eine parabelförmige Brücke konstruiert werden, damit ein LKW gut hindurchpasst?“

Fachlich ist das Problem über die Auswahl einer günstig gestauchten Parabelform zu lösen, für die dann entsprechend ein Funktionswert zu gegebener Breite berechnet wird, der den Höhenabschnitt von LKW Oberseite zum Tunnel-Scheitelpunkt im Betrag ergibt. Eine hohe Hürde stellt die Modellierung dar, aber das mathematische Problem ist im Grunde genommen eine Wiederholung aus der Mittelstufe.

Ich veröffentliche hier auch meinen Unterrichtsentwurf in Teilen, personenbezogene Daten selbstverständlich nicht. Gerade in der Anzahl der Lernziele (viel zu Viele) und in der Genauigkeit der Verlaufsplanung könnte der Unterrichtsentwurf noch einmal kritisch überarbeitet werden. Bei einer offenen Problemstellung muss man auch immer damit rechnen, dass völlig andere als die intendierten Vorschläge zum Thema werden, beim hier eingesetzten Bild beispielsweise Geschwindigkeiten oder geometrische Aspekte. Dabei sollte das „Ostereierraten“ vermieden werden, indem auch nicht-intendierte Vorschläge entsprechend gewürdigt werden, aber das Thema der Unterrichtsstunde im Unterrichtsgespräch fokussiert werden. Ich habe mir auch vorgenommen, die Selbstreflexion anders aufzubauen, entweder mit abhak-Kästchen oder mit mehreren Abstufungen zum ankreuzen statt wie in diesem Material geplant mit offenen Feldern. Aber bei allen selbstkritischen Überlegungen, vielleicht hilft er ja der einen oder dem anderen beim Schreiben solcher Entwürfe oder beim Durchführen eines ähnlichen Unterrichtsbausteines.

Materialien:

UE-Morisse-28.08-fuer-blog.odt

Hilfekarten.pdf

zusätzliche-Problemstellungen.pdf

reflexion-mathe-vs.pdf

Feb 292012
 

Am vergangenen Montag hatte ich eine Doppelstunde für eine problemorientierte Aufgabe in Mathematik in der Vorstufe mit Hospitation durch die Fachseminarleitung vorgesehen. Unter der Überschrift „Schafft ein Autofahrer es, bei 50 km/h Momentangeschwindigkeit rechtzeitig zu bremsen, wenn ein Reh 20 m vor dem Auto auf der Fahrbahn auftaucht?“ (mit einem vorgegebenen Richtwert für die Bremsverzögerung) sollte ein motivierender Anwendungsbezug für die Differentialrechnung über die Bestimmung eines Weges über die Momentangeschwindigkeit dargestellt werden.

Vorbereitet waren zusätzlich zur Überschrift mit einem plastischen Bild am Smartboard zwei Hilfekarten, die die beiden Grundformeln mit ihren Graphen enthielten. Nach einer längeren Gruppenphase sollten die Lösungswege und Lösungen auf Postern dargestellt und verglichen werden. Abschließend hatte ich zwei Grafiken vorgesehen, um den quadratischen Zusammenhang sowie die Abhängigkeit von der Oberflächenbeschaffenheit deutlich zu machen. Ein sehr physikalisches Thema also, anknüpfend an die vorangegangenen Stunden mit der Bestimmung der Momentangeschwindigkeit beim freien Fall.

Das Tafelbild zum Einstieg

Eine Grafik der ersten Hilfekarte

 Die Motivation zum Thema war gelungen, es wurde über Faustformeln in der Fahrschule diskutiert und auch die Fragestellung an sich war deutlich. Allerdings zeigten sich in den meisten Gruppen sowohl Schwierigkeiten, sich der Problemstellung zu nähern, als auch die Gestaltung der Hilfekarten als zu abstrakt und zu wenig kleinschrittig. Die Darstellung auf Postern gelang nur zwei von vier Gruppen, allerdings konnten wir zum Ende der Stunde zumindest passable Ergebnisse diskutieren und günstiger Weise auch zwei Varianten erkennen. Eine Variante bezog die Reaktionszeit mit ein, die andere nicht. Dies führte zu verschiedenen Ergebnissen und ich griff die Situation auf, um zu verdeutlichen, dass es beim Problemlösen verschiedene Lösungen geben kann und nicht eine Musterlösung vorgesehen ist. Klar ist das eine Modell genauer als das andere, aber falsch ist keine von beiden.

In der Reflexion habe ich einerseits festgestellt, dass ich die Ergebnisse auf jeden Fall in den weiteren Stunden aufgreifen muß, um Klarheit zu schaffen. Als zweites habe ich mich gefragt, ob ich nicht eher Physik als Mathe im Vordergrund der Problemstellung hatte. Aber die beiden Bereiche sind auch sehr eng miteinander verwandt und ich werde im folgende Unterricht darauf achten, dass es nicht physikalisch bleibt. Hier bieten sich vor allem wirtschaftliche Zusammenhänge als Anwendungsgebiet an. Die Kommunikation lief meiner Ansicht nach gut und es gab jederzeit Klarheit, was zu tun ist und meine Hilfsbereitschaft. „Nachsteuerung ist Normalgeschäft“sowie „Problemlösen ist kein Selbstgänger sondern muß systematisch erlernt werden“ sind zwei der Konsequenzen aus diesem relativ offenen Unterrichtsexperiment für mich. Eine Frage für die weitere Arbeit als Lehrer sind meine Kommunikationsprinzipien in Gruppenarbeitsphasen sowie dem Einplanen von mehr Raum für Klärungsprozesse.

In der darauffolgende Stunde habe ich zum einen eine Kopie zum Thema „Problemlösen im Mathematikunterricht“ verteilt als auch das Thema Bremsweg mit Material von Fahrschulen und Beispieldaten sowie den erstellten Postern aufgegriffen. Hier wurde auch von einem Schüler problematisert, wie sehr die Faustformel von den berechneten Werten abwich, wobei ich herausstrich, dass Faustformeln immer „auf Nummer sicher“ erstellt werden, also lieber mehr Zeit und Strecke einplanen, als physikalisch bei optimalen Bedingungen angemessen. Die beiden Grafiken, die ich für den Vortag vorgesehen hatte, hatte ich leider nicht kopiert und konnte sie im Klassenraum auch nicht per Beamer zeigen. Allerdings konnten wir anhand der Berechnungen für 30 km/h und 70 km/h, die am Montag als Zusatz gedacht waren, den Rechenweg noch einmal systematisch festigen.

Material: UE-Bremsweg für den Blog 

Nov 302011
 

Gestern habe ich an meiner neuen Schule in der 9.Klasse eine Doppelstunde Mathematik angeleitet unterrichtet.

Die vorangegangenen Stunden hatten den Satz des Pythagoras zum Inhalt, also ein klassisches Thema, zu dem sich auch eine Vielzahl an problemorientierten Unterrichtskonzepten finden lassen. Ich habe für die Doppelstunde aus dem Buch „Mathematik als Abenteuer“ eine handlungsorientierte Idee entnommen: Eine Raumdiagonale durchs Klassenzimmer gezogen, um diese dann nach Messungen der Abmaße des Raumes in Kleingruppen berechnen zu lassen.

Das Absperrband sorgte dann auch für erste Aufmerksamkeit zu Beginn der Stunde, allerdings wollte ich noch einige Grundlagen festigen, um den Einstieg in das Problem zu erleichtern, so dass der Lösungsweg doch wieder eher vorgegeben wurde.

Themen waren hier die Diagonale im Dreieck und der Quader, die ich entsprechend gemeinsam mit den Schüler/innen entwickelt habe. Die Aufgabe für die Tischgruppen hab ich entsprechend auf dem Smartboard festgehalten, weitere Materialien außer Maßbänder gab es keine.

Insgesamt wurde die Gruppenarbeit gut gelöst, auch der zeitliche Rahmen von einer Doppelstunde passte ganz gut. Nur das Problemlösen an sich als Konzept war der Lerngruppe eher ungewohnt, so dass sie teilweise auch schonmal schnell nach Unterstützung fragten, statt selbst loszulegen.

Hier ein Screenshot des Tafelanschriebs: